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Abstract

The Goldstein-Ruban theory has been extended

within the quasi-parallel framework of Zavol'skii el al.

to study the acoustic receptivity of compressible bound-

ary layers. We consider the receptivity produced in a

region of localized, small-amplitude variation in the sur-

face temperature and compare it with the receptivity that

is induced through a similar mechanism by a variation

in the suction velocity at the surface. The orientation

of the acoustic wave can have a significant impact on

the receptivity process, with the maximum receptivity

at a given sound-pressure level produced by upstream-

oriented acoustic waves. At sufficiently low Math num-

bers, the variation of receptivity with the acoustic-wave

orientation can be predicted analytically and is the same

for both surface suction and surface heating. However, as

a result of the acoustic refraction across the mean bound-

ary layer, the above dependence can become complex and

dependent upon the type of surface nonuniformity. The

results also suggest that the receptivity caused by tem-

perature nonnniformities may turn out to be more signif-

icant than that produced by the mean-flow perturbations

associated with strip suction.

1. Introduction

The central issue in regard to the generation of insta-

bility waves in low-speed boundary layers was the iden-

tification of the wavelength-reduction mechanisms that

enable the long-wavelength free-stream disturbances to

excite short-wavelength instability waves (Reshotko 1976,

Goldstein 1983). The pioneering work of Goldstein (1983,

1985), as well as that of Zavol'skii el al. (1983), Ruban

(1985), and Goldstein et al. (1987), showed that the

key to this wavelength-reduction process is the occur-

rence of sufficiently shorter length scales in the mean flow,

which can tune the free-stream disturbance to the length

scale of the boundary-layer eigensolutions. These short-

scale variations may occur either naturally (because of

the rapid development of a boundary-layer flow in the

vicinity of the leading edge (Goldstein 1983)), or inay

be induced externally (by a short-scale variation in the

surface boundary conditions). Examples in the second

category include irregularities in the shape of the airfoil

surface (Zavol'skii el al. 1983, Goldstein 1985, Ruban

1985) and nonuniformities in the surface distributions of

suction velocity and surface admittance (Kerschen and

Choudhari 1985). The theories of Goldstein, Zavol'skii et

al., and Ruban have subsequently been applied to a vari-

ety of problems, and the reader is referred to the reviews

by Goldstein and Hultgren (1989) and Kerschen (1989),

as well as to the relevant papers in Reda el al. (1991).

Many significant contributions in the area of boundary-

layer receptivity have been reported in the Russian litera-

ture as well, and some of those papers have been reviewed

by Nishioka and Morkovin (1986) and Kozlov and Ryzhov

(1990).

Much of the above research was related to the acous-

tic generation of instability waves and focused on the

incompressible flow regime, in which the wavelength

of acoustic disturbances is effectively infinite. The

acoustic wavelength shortens progressively (in compar-

ison with the convective length scale at the same fre-

quency) as the Math number is increased. However,

it remains asymptotically larger than the wavelength

of the viscous-inviscid interactive Tollmien-Schlichting

mode (TS) (Ryzhov and Zhuk 1986, Smith 1989) which

dominates the primary instability of two-dimensional

boundary layers at subsonic and moderately supersonic

speeds. Consequently, the wavelength reduction mecha-

nisms previously identified by Goldstein (1983, 1985), and

Ruban (1985) are also directly relevant to the generation

of the viscous-inviscid interactive modes in compressible

boundary layers.



At highsupersonicandhypersonicMachnumbers,
thedominantinstabilitiesof a boundary-layerfloware
predominantlyinviscid,andtheirphasespeeds(orwave-
lengths)arecomparableto thoseof theacousticdistur-
bancesin thefreestream.However,becausetheseinvis-
cidinstabilities(i.e.,Rayleighmodes)areprimarilysub-
sonicwith respectto the localfreestream,their phase
speedsdonotmatchwiththeacousticpropagationspeed
(exceptin a limitingsenseasdescribedin thefollowing
paragraph).Therefore,aspatialtuningof theunsteady
motion(forcedby thefree-streamdisturbances)is still
necessaryfor theexcitationof theinviscidinstabilities.
Thistuningcanbeprovidedby theshort-scalesurface
nonuniformitiesinmuchthesamemannerasthatin the
incompressibleboundarylayers.However,theasymp-
toticscalinginvolvediscompletelydifferentfor the in-
viscidmodesofsupersonicboundarylayers.Accordingly,
thedetailsof theenergytransferprocesscanbesignifi-
cantlydifferentin thetwospeedregimes,asdiscussedby
Choudhari and Streett (1990). This work describes the

extension of the Goldstein-Ruban theory to high-speed

boundary layers and presents numerical results for both

viscous-inviscid interactive modes and predominantly in-

viscid Rayleigh instabilities. However, because the main

purpose of that paper was to provide an overview of the

receptivity of high-speed boundary layers, only a few sets

of results were presented.

The limiting case mentioned in the preceding para-

graph involves a resonance in the leading-edge region of

a flat-plate boundary layer between the inviscid insta-

bility modes and the acoustic free-stream disturbances

that propagate parallel to the plate (Gaponov 1985). The

strong excitation of instability waves by such "grazing"

acoustic disturbances was recently explained by Fedorov

and Khokhlov (1991) with a theory that is the supersonic

analog of Goldstein's (1983) senlinal work on TS-mode

generation near the leading edge of a fiat-plate airfoil.

Because of the above-mentioned resonance feature, the

study of leading-edge receptivity in a highly supersonic

boundary layer reduces to a study of the sound-generation

mechanisms that excite the grazing acoustic disturbance

via a scattering process near the leading edge. (See the

more recent work of Fedorov and Khokhlov (1993) in this

context.)

In addition to the receptivity produced near the lead-

ing edge and the receptivity caused by scattering near

surface nonuniformities, other possible mechanisms ex-

ist through which a TS or a Rayleigh instability can be

excited in a supersonic boundary layer. These mecha-

nisms include a resonant forcing through the quadratic

interaction between a pair of acoustic and convected free-

stream disturbances, and a sustained generation of three-

dimensional TS waves through the interaction of slow,

near-planar acoustic disturbances and long-wavelength

GSrtler vortices. However, these mechanisms are some-

what specialized, and one may expect the overall receptiv-

ity to he dominated by the leading-edge mechanism and

the surface nonuniformities. The relative importance of

the two dominant routes for receptivity will depend cru-

cially upon the Mach number of the flow, as well as on

the leading-edge geometry and the amplitude and spatial

distribution of the surface nonuniformities. This particu-

lar issue is beyond the scope of this paper and, therefore,
will be addressed in a future article.

In this paper, we will examine in further detail the

generation of viscous and inviscid instabilities via the in-

teraction of a time-harmonic acoustic disturbance with

short-scale small-amplitude variations in the surface dis-

tributions of suction velocity and temperature. The ef-

fectiveness of strip suction and strip heating in stabilizing

gas boundary layers at subsonic speeds was demonstrated

theoretically by Reed and Nayfeh (1985) and Masad and

Nayfeh (1992), respectively. However, the mean-flow dis-

turbance induced by these devices can also act as a cat-

alyst in the receptivity process, as described above. The

receptivity due to both localized and nonlocalized varia-

tions in the suction-velocity distribution was studied in

the context of low-speed flows by Kerschen and Choud-

hari (1985) and Choudhari (1992), respectively; Choud-

hari and Streett (1990) investigated the localized recep-

tivity in high-speed flows. The use of surface heating or

cooling for laminar flow control (LFC) is primarily rele-

vant to the case of high-speed boundary layers, and the

associated receptivity mechanism does not appear to have

been studied thus far.

As shown by Kerschen and Choudhari (1985), two

distinct scattering mechanisms are responsible for the

acoustic receptivity induced by a porous surface that is

typically used for suction-based LFC. These two mech-

anisms are (1) scattering by the short-scale mean-flow

variations produced by a specified surface-suction distri-

bution and (2) scattering by variations in the acoustic

admittance of the porous surface. When the amplitudes

of both variations are sufficiently small, the receptivity



producedvia each mechanism can be examined indepen-

dently of the other mechanism. In this paper, we focus

on the receptivity produced in the zero-admittance limit

(i.e., on the receptivity that occurs through the mean-

flow variations only). A comparison will be made with

the analogous receptivity mechanism in the case of heat-

transfer strips at the surface. Receptivity that occurs via

surface admittance variations is studied in a separate pa-

per, wherein we also examine the effect of a nonzero sur-

face admittance on the stability of a compressible bound-

ary layer.

Generally, in this paper we focus on the localized

receptivity process associated with a single suction, heat-

ing, or cooling strip. However, receptivity produced in

noncompact LFC configurations that involve a series of

such strips will also be considered briefly. To predict the

outcome of the localized receptivity process, we utilize a

nonasymptotic extension of the Goldstein-Ruban theory,

which was summarized by Choudhari and Streett (1990).

A similar approach was used earlier by Choudhari and

Streett (1991) to predict the suction-induced receptiv-

ity in low-speed boundary layers. The assumption of a

small-amplitude surface disturbance may appear to be

somewhat restrictive in terms of applying the theory in

practice. However, this assumption simplifies the analysis

to a great extent; moreover, it enables fairly general con-

clusions to be drawn in regard to the receptivity produced

by different possible combinations of flee-stream and sur-

face disturbances, irrespective of the particular geometry

involved. (See Goldstein 1985.) A brief description of the

above nonasymptotic approach applied to compressible

boundary layers is given in section 2 below. The numer-

ical results, which are obtained for a flat-plate boundary

layer at various Mach numbers, are presented in section

3. Conclusions are given in section 4.

2. Description of the Analysis Involved

Consider the uniform two-dimensional steady super-

sonic flow of a perfect gas past an infinitely thin and

nominally flat airfoil that has a localized nonuniformity

in the surface distributions of suction velocity and/or the

temperature at a distance g* from the leading edge. The

:*velocity of the oncoming free stream is denoted by _ _o,

and the corresponding Mach number is symbolized by

M. The pressure, temperature, density, absolute viscos-

ity, and specific heat at constant pressure at the free-

* T,_,p_,p_ andstream conditions are denoted by P_, * * ,

C_, respectively; the ratio of the specific heat at con-

stant pressure to that at constant volume is denoted by 7.

We now assume that the local distributions of the surface

suction velocity and the surface temperature are given by

v_/uL = _(')F(')(x z)
It) W \ 1 1

(la)

and

T;/TL = T, ,o + z) , (lb)

respectively. The amplitude parameters _) and c_ ) are

assumed to be sufficiently small, so that the mean-flow

disturbance produced by each type of nonuniformity can

be treated as a small perturbation to the unperturbed

mean boundary layer. The quantity T_,0 in (lb) repre-

sents the local (nondimensional) surface temperature for

the unperturbed mean flow. The nondimensional func-

tions F_')(X, Z) and F(J)(X, Z) denote the normalized

distributions of suction velocity and surface temperature

in terms of the local coordinates

x - (x* - and Z = z*/6* (Ic)

along the streamwise and spanwise directions, respec-

tively, where 6* is the local displacement thickness as-

sociated with the unperturbed mean boundary layer.

The unsteady free-stream disturbance incident upon

the surface irregularity is assumed to be a time-harmonic

acoustic wave with the frequency w* (comparable to the

range of locally unstable frequencies), the streamwise

wavenuinber c_;_, and the spanwise wavenumber fl;_. We

use the symbol e_ to denote the nondimensional ampli-

tude of this wave, which is assumed to have been defined

in terms of the amplitude of the acoustic fluctuation in

an appropriate flow variable and normalized by a suitable

quantity associated with the mean flow. For now, we will

leave open the choice of the flow quantities involved in

defining e:_ and will simply assume that the latter pa-

rameter is sufficiently small, so that the unsteady part of

the motion can always be treated as a small perturbation

to the local mean flow throughout the region of interest.

As first shown by Goldstein (1985) and Ruban

(1985), the problem of studying the interaction of the

acoustic wave with the steady nonuniformity on the air-

foil surface is simplified considerably after the the small-
, (,) (t)

disturbance approximation (_w ,ew << 1, ea¢ << 1)is

invoked and the local nature of the interaction pro-

cess (6* << g*) is exploited. Specifically, if we use



U_, * "/* _ *poor _o , and T_ to nondimensionalize the local ve-

locities, pressure, and temperature, respectively, and

denote the corresponding nondimensional quantities by

dropping the superscript . on them, then we can expand

the array of dependent variables Q = (U, V, W, T, P) for

each type of surface nonuniformity in terms of the two-

parameter perturbation series

qi,)(x, y, z, t) = q0(Y) + y, z)

+ e_¢Q.c(y)ei[ _°cx+t_"cz-'_']

_(J)_ nO) (X y Z) e -i'°t"Jr- w ac"_w ac _,

+r)te(j) 2 2

where the superscript j indicates whether the surface

nonuniformity involves a short-scale variation in the suc-

tion velocity (j = s) or in the surface temperature (j = t).

The wall-normal coordinate Y has been scaled with re-

spect to 6", whereas the frequency w and time t have

been normalized by U_/6* and its inverse, respectively.

Implicit in the form of (2a) is the assumption that the

unperturbed boundary-layer flow is convectively unsta-

ble (Huerre and Monkewitz, 1990) at the location of in-

terest. This assumption is central to most problems of

receptivity, as discussed by Goldstein (1985).

The nonzero elements of the zeroth-order term

q0(Y) : (u0(Y), 0, 0,T0(Y),
7M 2 (2b)

denote the quasi-parallel approximations to the corre-

sponding base-flow quantities at z* = t*. The first-order

perturbations due to the wall nonuniformity and the free-

stream acoustic wave are indicated by the subscripts w

and ac, respectively. We can easily show that the mean-

flow disturbance Q_) due to the surface nonuniformity

satisfies the steady version of the parallel-flow disturbance

equations (Lekoudis et al. 1976), subject to inhomoge-

neous boundary conditions at the surface that are ap-

propriate for the type of nonuniformity involved. It is

necessary to point out that the surface-temperature vari-

ation induces a change in the local mean flow through

changes in both the density and the viscosity of the flow.

In this paper, we will not make any attempt to assess

the separate contributions to the mean-flow perturbation

through the above two channels; however, we expect that

for M = O(1) the dominant contribution will be provided

by the changes in the density of the flow. The signature

Q_¢ of the acoustic disturbance within the mean hound-

ary layer satisfies the unsteady parallel-flow disturbance

equations, subject to outer boundary conditions appro-

priate for the specified form of the incoming disturbance

(Mack 1984).

Neither of the two first-order perturbations simul-

taneously possesses the combination of length and time

scales relevant to the local instability motion. However,

this required combination is produced by the scattering

of the acoustic-signature field by the mean-flow distur-

bance. The leading-order solution for this scattered field
0)

is given by the O(ew e,2c) term in (2a) (i.e., the term

that contains Q_,)_), which represents the bilinear in-

teraction between the first-order perturbations Q(_/) and

Qac. After a Fourier transform is taken along the stream-

wise (X --* a) and spanwise (Z --* fl) directions, Q_)_

satisfies an inhomogeneous form of the linear stability

equations

LNS(O_,Oy fl, w, r, _(j), n_-j,_ .... = NNS;2(Q_),Qa_), (3)

in which the overbar denotes the Fourier transformed

quantities.

The operator LNS on the left-hand side of (3) de-

notes the matrix form of the linearized continuity and

Navier-Stokes equations in the transform space ((r, fl),
* rf, ¢_s ,and R_, = p_( _oo /lt_ is the Reynolds numher based

on the local displacement thickness of the unperturbed

boundary layer. The expression for LNS can be found in

different equivalent forms in the literature on the quasi-

parallel stability of compressible shear flows. The forcing

vector NNS;2 on the right-hand side represents the bilin-

ear interaction (indicated by the subscript 2) between its

vector arguments Q(wj) and Qac. It arises from the con-

vective and viscous nonlinearities in the exact governing

equations. The expressions for the elements of NNs;2 are

provided in the appendix. Even though we are interested

only in the receptivity of a two-dimensional hawse flow in

this paper, the expressions given in the appendix are gen-

eral and may be applied to arbitrary three-dimensional

base flows and other types of free-stream disturbances.

In fact, with a suitable modification of the terms that in-

volve w, the same expressions may be utilized in a study

of resonant triad interactions among disturhaces in con,-

pressible shear flows. As pointed out by Choudhari and

Streett (1990), similar interactions that involve an ap-

propriate combination of an acoustic and a convected

free-stream disturbance could also lead to receptivity in



high-speedboundarylayers.However,thereceptivityvia
this lattermechanismis expectedto berelativelyweak
inviewofthequadraticdependenceofreceptivityonthe
amplitudelevelofthefree-streamdisturbances,whichis
typicallyverysmall.

Dependingon thegeometryF(J)(x, Z) of a three-

dimensional surface nonuniformity, the instability motion

excited in its vicinity can have a considerably complex

spatial structure. However, because the interaction that

leads to this receptivity process is bilinear, the instabil-

ity waves that are produced via each spanwise Fourier

component of F(J)(X, Z) can be analyzed independently.

Therefore, we will confine our attention for the remain-

der of this work to those surface disturbances that are

periodic in the Z direction with a (single) wave number

/;_=/3_. That is, we will focus on cases where

F(J)(x, Z) = 5c(J)(X)ei_z. (4a)

The numerical results to be presented in section 3 cor-

respond exclusively to two-dimensional surface distur-

bances (i.e., to the special case fl_ = 0). In view of (4a),

the unsteady scattered field Q_!,c has the form

Q(J) (X,Y,Z) o(J) '" e_(_"c+_)z..... : -_,,a¢(A' Y) . . (4b)

The part of Q_,)_c that corresponds to the instability

mode of interest can be found as the residue contribu-

tion to the inverse Fourier integral

1 /__ O(J) (a Y)e i_'z da (5a)

from an appropriate singularity of the transform solution

o(J) ' Y) in the streamwise wave-number (a) space_W , OtC _ Og 1

(Goldstein 198,5, Ruban 1985). In general, this singularity

assumes the form of a first-order pole, and its location is

given by the spatial dispersion relation

(pu)Z,(x, Y, z, t) :

(P_/)a¢;i* "-'pu;('(J):U ERu(Y) ei[a'"'x+(_'_+p"_)z-wt] , (6a)

where pU*ac;i is the streamwise component of the mass-

flux perturbation that is produced by the incoming acous-

tic disturbance at the airfoil location (but in the absence

of the airfoil). The quantity Eou (Y; w,/3,, +fl_¢, R_. ) rep-

resents the local eigenfunction for the pU perturbation,

which is assumed to have been normalized so that it has a

maximum magnitude of unity across the boundary layer.

The "coupling coefficient" function (Tam 1981, Goldstein

1985) r,(J ) ( n et ;_ R6.) then represents the ra-
"JpU;pUk_W, ac_y'ac, cO ,

tio of the amplitude of the generated instability wave at

X = 0 to the amplitude of the incident acoustic wave;

both amplitudes are measured in terms of the respective

fluctuations in the streamwise mass flux pU, as indicated

by the double subscript pU; pU.

When the geometry of the surface disturbance is

more general than the harmonic form in (4a), the to-

tal unsteady fluctuation associated with the locally ex-

cited instability motion can be evaluated by integrating

over the contributions from the different spanwise Fourier

modes of the surface nonuniformity. (See Choudhari and

Kersehen (1990) and Choudhari (1993).) Thus, if the

nonuniformity has a periodic structure in the spanwise

direction (e.g., that corresponds to a periodic array of

suction holes), then the above sum will assume the form

of a discrete Fourier series in the Z coordinate. On the

other hand, if the nonuniformity is localized in both the

streamwise and spanwise directions, then this sum will

become an inverse Fourier integral in the flin_ plane.

Because of the bilinear nature of the acoustic scat-

tering process, the coupling coefficient fimction can be

written in a form that is similar to that in low-speed

boundary layers, namely,

(6b)
pU ; pU pU ; pU '

for the instability mode under consideration. As a re-

stilt of isolating the instability-wave part of the unsteady

scattered field, one is able to relate the amplitude of the

generated wave to the amplitude of the incident acoustic

wave. Thus, the dimensional perturbation in the stream-

wise component of the unsteady mass flux that is associ-

ated with the generated instability wave can be expressed

in the form (Goldstein 1985, Choudhari and Streett 1990)

where a_ - ai,_ - c_¢ and the cases j = s and j = t

correspond to the receptivity induced by variations in

the wall suction velocity and the wall temperature, re-

spectively. The factor _) .T(J) measures the amplitude

of the Fourier harmonic (_,/3_) of the surface suction

or the surface temperature distribution. This particu-

lar Fourier component of the mean-flow disturbance is

responsible for "tuning" the acoustic phase to that of



thegeneratedinstabilitymode.Theefficiencyfunction
_,(J) is independentof thelocalgeometryandiscorn-• pU; pU

pletely determined by the type of surface nonuniformity

and other flow parameters such as the frequency w and

wavenumbers c_c and/3_ of the incoming acoustic wave,

and the local Reynolds number R6-. This type of decou-

piing between the geometry and efficiency factors, which

was first pointed out by Goldstein (1985), is common to

all receptivity mechanisms that involve a scattering of

small-amplitude free-stream disturbances by weak surface

intlomogeneities. As the numerical results in the follow-

ing section demonstrate, the above decoupling enables

(1) the study of the intrinsic features of each receptivity

mechanism independent of the geometry involved and (2)

the direct comparison of the receptivity caused by differ-

ent types of surface nonuniformities, with the assumption

that the spatial distributions for all nonuniformities are

similar to each other (but otherwise arbitrary).

In (6), we used the perturbation in the streamwise

mass flux to measure the amplitudes of both the input

(i.e., acoustic) and the output (i.e., instability) waves. As

noted by Choudhari and Streett (1991), the knowledge of

('(J) is adequate to determine the outcome of the lo-
'_ U pU

calized receptivity process in any given case. However,

tile trends in the coupling-coefficient magnitude with re-

spect to variation in the flow parameters can be substan-

tially different if either or both of the wave amplitudes are

measured ill terms of a different physical quantity, such

as the associated pressure fluctuation at the surface. The

selection of the most appropriate physical quantity for

measuring the amplitudes of the reference and the out-

put waves is relatively less difficult in the case of incom-

pressible boundary layers, particularly when these flows

are two dimensional or axisymrnetric. This is because the

dynamics of the transition process in the above cases is

dominated by velocity perturbations that are parallel to

the mean flow.

The streamwise velocity perturbation is also easy to

measure in a wind-tunnel experiment by using a hot-wire

anemometer. Because the hot-wire response is actually a

combined measure of the perturbations in both the veloc-

ity and the density at the measurement location, a natu-

ral extension of the above definition of wave amplitudes

to compressible boundary layers is to specify the wave

amplitudes in terms of the respective fluctuations in the

streamwise mass flux. This choice was made by EI-Hady

(1991), who examined the effect of flow nonparallelism on

the growth of an instability wave. In studies of receptivity

in compressible flows, the same choice of wave amplitudes

is deemed convenient under many circumstances. How-

ever, situations do occur in which the pressure fluctuation

produced by the incident acoustic wave is more appropri-

ately used as the measure of the input-wave amplitude.

This situation occurs, for instance, when one is study-

ing the variation of the coupling coefficient with respect

to the orientation of the incident acoustic wave because

the pU perturbation associated with an incident wave of

given sound pressure level (SPL) can vary dramatically

as the angle of incidence is varied across its pernLitted

range.

3. Numerical Results

For a parametric study, we choose to examine the

receptivity of the boundary-layer flow past a semiinfi-

nite, adiabatic flat plate. The stagnation temperature

of the oncoming flow is held fixed at 311 K as the Much

number is varied. To start, we will consider the gen-

eration of a two-dimensional instability wave (by two-

dimensional acoustic disturbances) in a subsonic bound-

ary layer. Specifically, in section 3.1, we examine the in-

fluence of the free-stream Much number on tile COUl)ting

coefficients for receptivity that is produced through vari-

ations in both surface suction and surface temperature.

Of particular interest is the comparison of the receptiv-

ity produced by the two types of LFC devices for a given

extent of stabilizing influence on the incoming boundary

layer. The influence of acoustic-wave orientation on the

coupling coefficients is considered in section 3.2. Therein,

we illustrate how the acoustic-signature field and the cou-

pling coefficient in each case can at times be dramatically

influenced by the refraction of the acoustic motion across

the mean boundary layer. The cumulative effect of a

series of suction or heating or cooling strips on the recep-

tivity process is studied in section 3.3. In subsonic flows

at sufficiently large Much numbers, the spanwise length

scale of the acoustic waves can become sufficiently short,

whereby a three-dimensional instability wave can be ex-

cited even when the surface nonuniformity (i.e., suction

or heating or cooling strip) is purely two dimensional.

The excitation of three-dimensional instability waves by

three-dimensional acoustic waves is examined in section

3.4. Finally, in section 3.5, the receptivity of a supersonic

boundary layer is considered.



3.1 Influenceof Mach Number on tile Cou-
pling Coefficient

In thefirst setof calculations,weconsiderthegen-
erationoftwo-dimensionalinstabilitiesnearasuction(or
heat-transfer)strip thatcorrespondsto auniformdistri-
butionofsuctionvelocity(or temperatureperturbation)
acrossits width.Thelocationof thestripisassumedto

_1/2 955at all Machnumbers.Thischoicebe at R_._, =

results in a slightly different value of R_. at each Mach

number. However, the use of Re* (i.e., the Reynolds num-

ber based on the distance from the leading edge) is more

convenient for a flat-plate geometry. Moreover, because

the range of Mach numbers considered here is limited, the

accompanying variation in /Q, is not large.

We assume that the orientation of the incident acous-

tic wave is held fixed at 0a¢ = 450 as the Mach number

is varied. Here, Oac denotes the (clockwise) orientation

of the wave-number vector of the incident acoustic wave

with respect to the mean-flow direction. Thus, the range

0_¢ E [0, 1r/2) corresponds to incident waves that travel

downstream, whereas 0_ E (r/2, rr] denotes the range of

upstream-traveling incident waves. The polar angle of in-

cidence 0_ with respect to the surface normal is related

to 0_. via 0_ = ]rr/2- 0_[. Note that in a wind-tunnel

experiment it is perhaps easier to produce an acoustic

wave that propagates downstream (as well as upstream

in a subsonic flow) in a direction parallel to the plate.

However, the choice 0ac = 45 ° appears to be more gen-

eral than 0_ = 0° for assessing the values of the coupling

coefficient. Subsequent calculations in which we examine

the influence of acoustic-wave orientation on receptivity

will demonstrate that the value of the efficiency function

for an incident wave that propagates downstream (and

upstream if the Mach number is small) can be easily re-

lated to the efficiency function for an incident wave that

propagates along 0a¢ = 45 °.

The geometry factor for the suction or heat-transfer

strip is given by

_(j) = 2a/2 sin (c_wd/2) (7a)
7r 1 / 2_ w

where d is the (nondimensional) width of the strip. We

have assumed that the amplitude of ._(J)(x) is equal to

unity for both j = s and j = t. We will focus our atten-

tion on the excitation of the instability mode that corre-

sponds to the lower branch (to be indicated by subscript

lb in this paper) of the neutral stability curve at R = 955.

In that case, (Ta) shows that the geometry factor has its

maximum magnitude when the width d of the suction or

heating strip is given by

11"

d - (a,,; Ib = OLin._; Ib -- OZac; lb). (Tb)
_w; [b

To obtain the upper limit on the receptivity produced by

a single strip, assume that the strip width is equal to the

value given by (7b). Because the wave number oqn,;lb

of the neutral instability wave at R = 955, and the wave

number c_¢; Ib of the incident acoustic wave vary with M,

the total mass or heat flux across the width of the strip

will also be a function of M with the above choice of strip

width. This total-flnx parameter is expected to determine

the overall stabilizing influence of a suction (or heating)

strip upon the boundary layer. As a result, the total

"gain" from the suction or heating strip will vary to some

extent with the Mach number. Nevertheless, the overall

variation in Ctw;ib is relatively small at the assumed value

of acoustic orientation (_;Ib _ 0.13 at M = 0, whereas

c_; Ib -_ 0.09 at M = 0.99). Therefore, the above choice of

strip width appears to be reasonable from the standpoint

of assessing the effect of free-stream Mach number on the

coupling coefficient r'(s) that is likely to be measured
"_pU; pU"

in an experiment.

In figures l(a) and l(b), we have plotted the magni-
rT(')

tudes of the normalized coupling coefficients _ and

C (')
in the above case as functionsof M. For both

types of surface disturbances, the coupling-coefficient

magnitude varieslinearlywith M as M --+0. In other

words,the compressibilitycorrectionto the couplingcoef-

ficientisO(M) inmagnitude, which issignificantlylarger

than the O(M _) variationin the same limitin both the

localstabilityproperties(Ryzhov and Zhuk 1986,Smith

1989) and the characteristicsof the mean-flow pertur-

bation (Stewartson 1974). The O(M) variationin the

receptivitypropertiesismainly caused by a comparable

variationin the acoustic-signaturefieldas M --_0 and

can be explainedin the followingmanner.

Go[dstein (1985)and Ruban (1985)showed that the

receptivitynear the lower branch locationismainly con-

centratedina thinsubregion ofthe mean boundary layer

thatoccupies the regionclosetothe surface.Because the

acousticwavelength at the frequency and in the range

of Mach numbers under considerationisasymptotically

largerthan the thicknessofthe mean boundary layer,the

acousticpressurefluctuationvariesvery littleacrossthe



boundary layer. Moreover, the zero-normal-flow condi-

tion at the surface causes the reflected pressure wave to

be in phase, locally, with the incident wave. As a result,

the pressure fluctuation near the surface is twice as large

as the pressure perturbation associated with the incident

wave alone. The pressure perturbation drives a Stokes

shear wave in the viscous wall layer, which is scattered

by the local mean-flow perturbation to produce the in-

stability wave. The profile of the Stokes wave is indepen-

dent of the flow Mach number, the acoustic orientation

0ac, and the mean boundary-layer properties. As a conse-

quence, the coupling coefficient is simply proportional to

the amplitude U,t of the Stokes wave, which differs from

the streamwise velocity perturbation associated with the

incident acoustic wave by a factor given by

U_t 2

Uac;i 1 + M cos0_c (u_c;i = McosflacP_c.i).

(s)
The factor 2 in the numerator of the right-hand-side in

(8) accounts for the reinforcement of the Stokes-wave am-

plitude by the reflected acoustic wave, whereas the factor

1 + Mcos 0_ in the denominator is attributed to the

difference in inertial forces in the wall layer and in the

local free-stream region. The other reason for the O(M)

variation in the coupling coefficient as M _ 0 is that the

receptivity is correlated with the amplitude of the stream-

wise velocity perturbation produced by the Stokes wave;

tile coupling coefficient in figures l(a) and l(b) is based

on the mass-flux perturbation associated with the inci-

dent wave. The amplitudes of the acoustic perturbations

in velocity and mass flux differ by an O(M) amount that

corresponds to the extent of density perturbation pro-

duced by the acoustic wave.

The coupling coefficient for both types of surface

nonuniformities decreases as the free-stream Mach num-

ber is increased. Throughout the range of Maeh numbers

considered, the ratio t-'(') ,(t)_pt/;pt/I/IGp{/;puI of the coupling

coefficients is ill the range of approximately 150- 200
times the ratio (,), (t)ew /_,_ of the corresponding surface-

disturbance amplitudes. Note that receptivity that is

induced by a given distribution of surface suction or sur-

face temperature is generally an undesirable by-product,

or "cost," of using that particular type of LFC device.

Therefore, in order to compare the costs involved in us-

ing surface suction and surface heat transfer for LFC, it

is necessary to adjust the ratio (')" (t)_ /e_0 of amplitude pa-

rameters in such a way that the gain in stability (i.e., the

increase in transition Reynolds number) is the same in

both cases.

Because the effect on stability of a single heating or

cooling strip is highly sensitive to the location of the strip

(Masad and Iyer, 1993), we assume that the suction and

the heat-transfer strip under consideration is just one out

of many such strips that comprise the LFC system. One

would expect that the effect on stability of this type of

configuration will be analogous to that of continuous suc-

tion or cooling at a suitably modified level. A compari-

son of the results in figures 12(a) and 14(a) in Masad and

lyer (1993) shows that in order to achieve an identical in-

crease in the transition Reynolds number for both types

of LFC, the surface-temperature perturbation _) needs

to be approximately 2150 times larger than the suction

parameter ¢_). The above estimate corresponds to the

linearized limit employed in this paper, however the ratio
(t), (_)

_w /_,_ was found to increase further as the respective

amplitudes were increased beyond the linear range.

For the case of (t), (_)e_o /e_ = 2150, the coupling coeffi-

cient for the heat transfer strip in figure lb will be almost

11 to 15 times larger than the coupling coefficient for the

receptivity produced by the suction strip. The lower ra-

tios in the above range correspond to smaller Mach num-

bers, whereas the higher values correspond to the tran-

sonic range of Mach numbers. In section 3.2, we wilt allow

both the frequency parameter and the orientation of the

incident wave to vary, but keep the Mach number fixed

at M = 0.9. The results obtained for these cases indicate

that the ratio of the coupling coefficients for the two types

of LFC devices varies with w and 0ac, but nowhere to the

extent where it will affect the above conclusion concern-

ing the qualitatative comparison of their respective mag-
nitudes. Note that the estimate that (t), (s)¢w /¢,o = 2150 for

equal gains in stability was based on the results obtained

in the low-Mach-number limit, but we do not expect it to

change significantly over the Mach-number range consid-

ered. Of course, it needs to be seen at what values of ¢_)

and _(_) the linearized theory becomes inapprorpiate.

3.2 Influence of Acoustic-Wave Orientation

Now we examine the influence of the acoustic-wave

orientation 0_ on the receptivity produced by both types

of surface disturbances. Toward this purpose, we consider

the variation with 0_¢ in the respective coupling coeffi-

cients at a fixed Mach number. The location of the strip

and the acoustic frequency parameter are the same as

the corresponding values in figures l(a) and l(b). How-



ever,thestripgeometryin (7b)isdiscardedin favorof
a narrowsuctionandheating/coolingstrip that is ap-
proximatedbythedistributionf(/)(X) = (27r)-_/2_i(X).

Recall from (6b) that the coupling coefficient for this ge-

ometry is given precisely by the relevant efficiency flmc-

tion A (/). The reason for choosing the narrow-strip ge-

ometry is that its Fourier spectrum is uniform across the

wave-number range of interest and, hence, is independent

of the wave number c_w;ib at which the geometry factor

.g'(J) is evaluated. At sufficiently large Mach nmnbers,

the acoustic wave number c_c varies significantly with

80¢. Consequently, the choice of the geometry in (7b)

will lead to significant variation in c_;ib and hence in the

width of the strip as the independent parameter 0ac is

varied across its range. This problem does not arise in

the narrow-strip limit. Moreover, as shown by Kerschen

and Choudhari (1985) (see, also, Choudhari 1992), a nar-

row suction strip will result in the maximum coupling

coefficient for _ = ¢Olb, provided that the total suction

rate across the strip is kept fixed as the strip width is

varied.

Because of the variation in C_ae with 0a¢, the pU per-

turbation produced by an incident acoustic wave of given

SPL also varies significantly as 8_c is varied across [0, 7r].

In fact, for M < 1, the pU perturbation becomes zero at

a critical angle of incidence. The critical angle is given by

0_ = cos-t(-M) and lies in the range (Tr/2,_r) (i.e., in

the range of upstream-inclined acoustic waves). There-

fore, in this section, P_e;i is kept fixed as 0_c is varied

(rather than fixing (pU)_ as in figures l(a) and l(b) of

the previous section).

The solid curves in figures 2(a), 2(b), and 2(c) illus-
(_)

trate the variation in the efficiency function IApu;e(0_)l

at M = 0.1 0.5, and 0.9, respectively. In each case, the

efficiency function has been normalized by its value for

Sac = 0 (i.e., for an incident wave that propagates parallel

to the mean-flow direction). Because of this normaliza-

tion, the results plotted are actually independent of the

physical quantity that is used to measure the instability-

wave amplitude. In addition, for M = 0.1 and 0.5, the

acoustic wave number is uniformaly small as compared

to c_i,_;ib. Therefore, in general, it will not influence the

magnitude of the geometry factor _-(J) (_*,_;lu) to a signifi-

cant extent, as a result of which the results in figures 2(a)

and 2(b) also approximate the ratio of the coupling coef-

ficients for the strip geometry defined by (Tb). At each

selected Mach number, the highest value of the efficiency-

function magnitude corresponds to an incident wave that

is inclined in the upstream direction. At sufficiently small

Math numbers (figure 2(a)), this maximum corresponds

to an incident wave that travels in the direction that is

nearly opposite to the direction of the mean flow. More-

over, in all three cases, the ratio of the maximum ef-

ficiency function magnitude to that at 0_¢ = 0 is nearly

equal to the corresponding ratio of the Stokes-wave ampli-

tudes in the viscous sublayer, which is indicated in figures

2(a) through 2(c) by the curve that contains symbols. In

fact, the entire A(') t 0 sl/IA(') tO = 0)l curve cor-
I_.pU.P_ ac) I pU;P_, ac

relates with the ratio of Stokes-wave amplitudes, which

was obtained from (8).

The maximum of the ratio of the Stokes-wave am-

plitudes at any given Math number always corresponds

to the upstream-traveling mode, and it increases rapidly

with the free-stream Math number. Although the maxi-

mum of the efficiency-function curve also increases with

M, it increases relatively less rapidly as M approaches the

transonic range (figure 2c). Moreover, this maximum cor-

responds to an incidence angle of0_ _ 145° at M = 0.9,

and the efficiency-function magnitude decreases rapidly

as 0_ is increased further. Although a similar behavior

is also noted at M = 0.5, it is most prominent in the

transonic case at M = 0.9.

The cause for the deviation of the efficiency-function

curve from that predicted by (8) was traced to the varia-

tions in the acoustic pressure field across the mean bound-

ary layer, which result in a weaker acoustic-signature

field within the viscous sublayer next to the surface. As

remarked in section 3.1, the surface pressure coefficient

¢2p - P_(Y = O)/P_<i is equal to 2 at nearly all values

of 0_ when the Math number is sufficiently small. How-

ever, this picture begins to change as the Mach number

M becomes larger. This change is caused by a decrease

in the acoustic wavelength (relative to the boundary-layer

thickness) that accompanies the increase in M and leads

to a significant refraction of the incident and the reflected

waves across the mean boundary layer. In effect, the re-

fraction process modifies the perfect in-phase relationship

(i.e., a constructive interference) between the incident

and reflected waves near the surface. This modification

leads to a reduction in ICPI and also alters the nature of

velocity fluctuations close to the surface. At a fixed value

of the frequency parameter, the acoustic wavelength is

relatively shorter for the upstream-travelling waves and,

hence, the refraction hy the mean boundary layer is more



significantfor0_ > r/2. As an example, consider the fre-

quency parameter that corresponds to the lower branch

mode at R = 955 and M = 0.9. At this frequency,

the shortest acoustic length scale (defined as one-quarter

of the acoustic wavelength) is approximately five times

the displacement thickness of the mean boundary layer

(i.e., only about 1.6 times larger than the boundary-layer

thickness based on 99.9 percent of the local free-stream

speed). The effect of transverse pressure variations in

transonic boundary layers has also been noted by Ryzhov

(1993); however, this work examined the the stability of

boundary layers rather than their receptivity to acoustic

disturbances.

To check on our numerical calculations, we also com-

puted (_'p as a function of Oac at Reynolds numbers of

R = 1910 (i.e., R = 2.0. 955) and R = 3820 (i.e.,

R = 4.0 • 955) for the same value of the nondimen-

sional frequency parameter w considered in figure 3(a) at

R = 955. Because the mean boundary-layer profile is self-

similar, the Cp versus 0_c variation at all three Reynolds

numbers was graphically indistinguishable. As a result,

a purely inviscid calculation such as that carried out by

Duck (1990) for M > 1 is also expected to yield the same

result for the acoustic-field signature.

As long as the efficiency function correlates with the

amplitude of the Stokes shear wave, its dependence on

0_¢ is nearly identical for both types of surface nonuni-

fortuities. (See figures 3a through 3c for the variation of
A(t)

pu;pl with 0_c.) However, if the acoustic-signature field

becomes nontrivial because of the refraction effect at the

higher Math numbers, then the dependence of a(J)
"XpU;P

on 0_ tends to be different for the different type of sur-

face nonuniformities. For example, the maximum val-
ues of A (j) t'0 I/Ii(J) (0

pU;P t, acl/I pU;Pk at, ---- 0)l in figures 2(c) and

3(c) are equal to 2.2 and 3.6, respectively, for j = s and

j = t. Similarly, in a companion study that deals with

the receptivity induced by surface-geometry variations,

we have found that the corresponding peak value for the

geometry-induced receptivity is equal to approximately

8.1. Note that the finding of a somewhat larger peak ra-

tio in the case of temperature-induced receptivity as com-

pared to that for the suction-induced receptivity tends to

support our earlier remarks (section 3.1) in regard to the

relative strength of those two receptivity mechanisms.

The results in figures 2 and 3 can also be applied

to predict the expected value of the efficiency function

A(/)pu;p (i.e., the expected value of the coupling coefficient

in the narrow-strip limit) for the case where the angle

of acoustic incidence 0_ is unknown, but has an equal

probability of assuming any value in the range [0, 7r]. At

M = 0.9, the expected magnitude of A(:) is predicted
2XpU;P

A(j) •to be larger than pu;pu(Oac = 0)[ by a factor of ap-

proximately 1.07 for j = s and 1.54 for j = t. These

factors are considerably smaller than the common factor

6.15 that would have been predicted on the basis of (8).

Thus far, we have discussed the excitation of the in-

stability wave that corresponds to the lower branch mode

at the location of the strip. Figures 4(a) and 4(b) de-

pict the variation in the efficiency functions a(J)ZXpU;p I at
R = 955 as the acoustic frequency parameter is varied

while the angle 0_ remains fixed at a given value. Note

that a comparison of A(J) for j = s and j = t is
lXpU; P

also equivalent to the comparison of the respective cou-

pling coefficients for an arbitrary distribution 5t-(J)(X),

provided that ._'(')(X) = F(t)(X). The abscissa in fig-

,o*_," w / R_. andures 4a and 4b corresponds to f - _ -
results have been plotted for a set of selected values for

0ac. For reference, the variation with f in the spatial

growth rate -hn(cQ and the phase speed cin, - _/Re(c_)

is also indicated in each plot.

For suction-induced receptivity, the magnitude of the

efficiency function increases as the frequency parameter

is reduced. Of course, the low-frequency modes will have

to undergo an exponential decay before they reach their

respective lower branch locations. Therefore, the high-

est effective amplitude at the lower branch location will

correspond to a frequency parameter that is somewhat

smaller than the lower branch frequency. Alternatively, if

one is interested in the excitation of the instability wave

at a given frequency, then the most dangerous location

for a narrow suction strip will be slightly upstream of

the lower branch. For any given 0_, the behavior of the

efficiency function curve [A(t) p[ is somewhat differentpu;
from that of A (_) This difference is such that in the

pU; P "

range of unstable frequencies it tends to enhance the ra-
tio A (*) / A O)

I pU; P I/ pU; P l as compared to the value of this ratio

for the lower branch mode. On the other hand, the rapid

rise in [AO) in the low-frequency regime will reduce thepU;P

ratio of coupling coefficients to a small extent. Finally,

we observe that for both types of LFC devices, the an-

gle of acoustic incidence that leads to the most efficient

excitation of the instability wave of a given frequency

tends to decrease somewhat as f is increased. However,

in general, the above orientation always corresponds to

l0



anupstream-travellingacousticwave.
3.3Receptivity Producedby anArray of Suc-

tion or Heating/Cooling Strips
Becauseof theweak-surface-nonuniformityassump-

tionutilizedin thispaper,thereceptivitypredictionsfor
anindividualsuctionor heatingstrip caneasilybeex-
tendedto anarrayof stripswithanarbitrarydistribu-
tionofsuctionvelocityorsurfacetemperature.Thegen-
eralframeworktoextendtheGoldstein-Rubantheoryfor
localizedreceptivityto thecaseof receptivityproduced
bydistributedsurfacenonuniformitieswasdescribedby
ChoudhariandStreett(1990,1991)andin furtherdetail
by Choudhari(1993a,b).Basically,theefficiencyfunc-
tion for localizedreceptivityisutilizedasa localinflu-
enceflmctionin thelattercase.(Thisideawasoriginally
proposedbyTam(1981)in a relatedcontext.)Thenet
receptivityisobtainedbyintegratingoverthecontribu-
tionsfromeachindividualsubregionacrossthelengthof
theregionofnonuniformities.

As shownby Zavol'skiiel al. (1983), Tumin and

Fedorov (1983), and C,houdhari (1993a,b), the above in-

tegration process must include the effect of interference

between the instability waves that are generated in differ-

ent parts of the overall region of receptivity. The outcome

of the interference process is determined by the geometry

of the surface nonuniformity and by the variations in the

wave numbers ai,,, and a_c across the region of receptiv-

ity. In particular, when a uniform suction (or heat flux) is

applied through an array of equidistant strips of uniform

width, Choudhari (1992)showed that most of the recep-

tivity is actually produced by the strips that are located

in the vicinity of the lower branch location. The ratio

('(J) for the arrayof the effective coupling coefficient...,_y

(which measures the effective amplitude of the generated

instability motion near the lower branch location) to the

local coupling coefficient "'(J) for a single strip at thet_local

lower branch location is given by

(-,O) la,.;.,i
'local

exp[ (llOgu';lb q- Ogac-_lb-- OHns;Ib)2JiD_," (9a)

Here (_w(/_a.) --- a*6*(/_.) denotes the fundamental

wave number of the periodic suction (or temperature) dis-

tribution, and the factor /)_ is a measure of how rapidly

the unsteady forcing on the right-hand side of (3) (which

is produced by the bilinear interaction between the free-

stream and surface disturbances) becomes detuned, or

"desynchronized," with respect to the phase of the insta-

bility mode. For a fiat plate boundary layer, the desyn-

chronization factor is given by

D°: (<.,;,u

where the primes denote differentiation with respect to

Ra*, and the subscript lb indicates evaluation at the lower

branch location Ra. = R_;b, as mentioned previously. In

an accelerating or decelerating free stream, the expression

for Do will also incorporate the additional detuning (or

tuning) because of the variations along the streamwise di-

rection in the physical wave number of the acoustic wave.

Note that the ratio in (9a) is independent of the physical

quantity in terms of which the amplitudes of the input

and the output waves are measured, provided only that

the same measure is adopted for both types of configu-

rations. As a result, we have dropped the corresponding

subscripts on (70) in both the numerator and the denom-

inator.

To supplement the results of section 3.1 on the re-

ceptivity induced by a single strip, we can examine the

upt)er limit on the receptivity produced by an array of

strips. For the strip configuration defined in (7), we

expect that the maximum receptivity will occur when

O_w;lb ---: _ins;lb- O'ac;lb. In that case, the maximum

value of the ratio in (9a) will be given by

7_.... y., .... = 1 _ac;lb [ 7_D (9c)
' t_ins;lb I

where

gD- _i_,;Ib (9d)
  ,ATb7

The factor _D is independent of 0a¢ when the free stream

is uniform. However, the ratio Tg-array;ma× is a func-

tion of the acoustic-wave orientation because of the ad-

ditional factor _ =_ 1 - ¢'"_ ,b (= 1 - ¢,..Mco_e=_ for a
c_,_, ;lb 1+Mcos 8._

two-dimensional acoustic wave) that appears on the right

hand side of (9c). An analogous factor is also present

in the case of receptivity to convected free-stream dis-

turbances. However, for convected disturbances, the fac-

tor 7_a is independent of the disturbance structure along

the surface-normal direction (e.g., the orientation of the

wave-number vector if a single Fourier mode of the con-

vetted perturbation is considered). Because of an over-

sight, the factor g_ was omitted in (4a) of Choudhari
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(1994)and,also,in theestimatefordistril:utedreceptiv-
ity presentedinChoudhariandStreett(1993),whichled
to theanoverpredictionof theratioT_a,-,-au;max in those
works.

Not only does 7_ depend on the orientation of the

incident disturbance in the case of free-stream acoustic

waves, but can lead to either an increase or a decrease

in the magnitude of T_array;rnax, depending on Oac. For

downstream travelling waves a_c; lb is positive, which im-

plies that [_c,l < 1 for those waves. On the other hand,

c_ac;jb is negative for upstream travelling waves, and can

assume rather large values at transonic Math numbers.

This will lead to a substantial increase in the magnitude

of _ ..... v;m_×" The physical explanation for the effect

of 7_, on the effective coupling coefficient for distributed

receptivity is as follows. The length scale of distributed

receptivity is fixed by the desynchronization factor /),.

Therefore, it does not vary with 0_c in the case of a

flat-plate boundary layer. An increase or decrease in

Ctw;lb = O¢ins;tb- t"tac;l b then corresponds to a decrease or

increase in the spacing between an adjacent pair of strips.

Ttle latter, in turn, implies an increase or decrease in the

number of strips that lie within the (fixed) length scale

of distributed receptivity and, hence, contribute to its

cumulative effect.

In the context of the conceptual experiment consid-

ered in figures l(a) and l(b), we note that for 0oc = 450

the factor T_, varies from 1.0 at M = 0 to approximately

0.87 at M = 0.99. (Because the value of 7_ is nearly

equal to unity in this case, the ratio "]_array;max could

even be approximated by the factor 7_0.) The magnitude

of _D at a lower branch Reynolds number of R = 955

has been plotted in figure 5 as a function of M. The

magnitude of no decreases from 9.3 at M _ 0 to ap-

proximately 7.3 as M --, 1.0. Therefore, at 0_ = 45 °,

the ratio [7_a_v; ..... [ will decrease from 9.3 to 6.3 across

the range of subsonic Mach numbers. By combining this

estimate with the results of figures l(a) and l(b), we can

conchtde that the effective coupling coefficients ('(J)
"J pU ; pU

for distributed receptivity will exhibit the same trend, as

the Mach number is varied, as that of the respective local

coupling coefficient for an individual strip (figures l(a)

and 1(b)).

3.4 Excitation of Three-Dimensional Instabil-

ity Waves

The results of section 3.2 demonstrate how the de-

crease in the acoustic wavelength as M increases can have

a significant impact on the acoustic-signature field and on

the magnitude of the coupling coefficients. Another con-

sequence of the decreasing acoustic wavelength at O(1)

Mach numbers is that even three-dimensional instabil-

ity waves can be excited near a two-dimensional distri-

bution of surface nonuniformities if the free-stream dis-

turbance has a suitable azimuthal orientation. In fig-

ure 6(a), we have plotted the azimuthal angle ¢i,_ -

arctan '"' of the generated instability wave as

a function of the azimuthal orientation ¢_ of the inci-

dent acoustic wave. The Mach number chosen for this

calculation is equal to 0.9, and the values of R and o_ are

the same as the corresponding values at M = 0.9 in fig-

ure l(c). The polar angle of incidence 0P_ = 17r/2 -0_ I is

held fixed, and ¢ac is varied across the range 0 < ¢_ < rr.

When ¢ac is an acute angle, the incident wave prop-

agates downstream; for obtuse azimuthal orientations

(¢_, > 7r/2), the incident wave travels upstream. Thus,

the case 0aPe = 55 ° and ¢ac = 180 ° corresponds to the

two-dimensional wave with Oac = 1450 in figures l(c) and

3(c), which leads to the highest value of the norrrlalized

coupling coefficient for both j = s and j = t.

For _ = Wlb at R = 955, instability waves with ¢i,_

less than approximately 35 ° can be excited near a two-

dimensional surface nonuniformity. (See figure 6(a).) The

maximum possible value of ¢in, tends to increase as 0_

is increased, so that the above-mentioned upper limit on

¢ins is realized when the incident wave propagates par-

allel to the plate surface. At any given 0_, the same in-

stability mode can be excited by a pair of acoustic waves

that corresponds to two different values of ¢_. When

O_c is small, the dins curve is roughly symmetric with re-

spect to ¢_¢ = _r/2. As a consequence, the wave-number

vectors of two acoustic waves that excite the same in-

stability mode are nearly symmetric with respect to the

spanwise direction. As 0_ is increased, the behavior of

¢in_ becomes increasingly asymmetric about Ca_ = r/2.

Therefore, both incident waves, which excite an instabil-

ity mode that corresponds to ¢i,_ in the vicinity of its

maximum, are upstream-travelling waves. The variation

in the efficiency-function magnitudes for the two types of

surface disturbances is shown in figures 6(b) and 6(c),

respectively. Interestingly enough, the efficiency fimc-

tion at O,_c = 550 and 85 o actually tends to zero near

some critical azimuthal orientation that corresponds to

an upstream-inclined acoustic wave.

12



3.5 Receptivity at Low Supersonic Speeds

At subsonic Mach numbers, the angle 0ac of a two-

dimensional incident wave can be varied continuously

from 0 to :r by varying its wave number aac in the stream-

wise direction. However, for M > l, the acoustic disper-

sion relation for a plane wave allows two disjointed sets of

modes. The so-called fast mode is analogous to the acous-

tic waves in a subsonic flow, except that the angle of in-

cidence for a fast acoustic mode in a supersonic stream is

constrained to the range 0_¢ E [0, 7r-arccos (_)] instead

of the complete range [0, :r] that is relevant at the sub-

sonic Mach numbers. The excluded range of angles gets

folded back to the range (-arccos (_-), 0) that the slow

mode occupies. The slow mode has a critical layer within

the mean boundary layer and is, therefore, unique to the

supersonic range of Mach numbers. The solid curves ill

figures 7(a) and 7(b) illustrate the variation in the mag-

nitudes of the efficiency functions "pu;PIA(s) and [Apu;p[(0as

0_¢ is varied for both the fast and the slow acoustic modes

in the boundary-layer flow at M = 1.2. Again, the loca-

tion of the LFC device is chosen to be R = 955, and the

frequency parameter corresponds to w _ 0.033, which

is close to the lower branch frequency predicted by the

quasi-parallel stability theory. Note that the effect of non-

parallelism becomes increasingly significant (in terms of

determining the growth rate of a two-dimensional insta-

bility wave) as one crosses over the transonic regime into

the supersonic range (Smith 1989, Ryzhov and Savenkov

1990). However, the leading-order eigenfunction is al-

ways determined by the quasiparallel theory (Fedorov and

Khokhlov 1991); hence, the application of the present re-

ceptivity theory is feasible in this particular case.

Figures 7(a) and 7(b) show that the efficiency func-

tions for the slow acoustic mode do not correlate with

the behavior predicted by (8) (indicated by the curve with

symbols). In fact, even the results for the fast mode show

substantial deviation from the analytical prediction as 0,c

becomes large. The highest value of the normalized cou-

pling coefficient occurs for a fast mode that is incident

at 0_ _ 135 ° in both cases. However, its magnitude for

temperature-induced receptivity (_ 4.25) is much larger

than that for the suction-induced receptivity (_ 1.5). The

maximum coupling coefficient for a slow acoustic mode is

smaller than the maxilnmn for the fast mode in this par-

ticular case. However, this trend is not always the case;

because an opposite trend was encountered in an analo-

gous set of calculations at M = 1.6.

4. Concluding Remarks

The Goldstein-Ruban theory was extended in this

paper to develop theoretical predictions for the acous-

tic receptivity produced by two-dimensional variations

in the surface suction velocity and in the surface tem-

perature. The receptivity mechanism that is related to

mean-flow variations induced by these laminar flow con-

trol (LFC) devices is likely to be stronger when surface

heating or cooling is used for LFC (in comparison with

the case where surface suction is used). The orientation

of the acoustic wave can have a significant impact on

the magnitude of the coupling coefficient in both cases.

Moreover, at the larger subsonic Mach numbers, this in-

fluence is rather nontrivial for upstream-oriented acoustic

waves, which produce the highest receptivity at a given

sound pressure level (SPL). Moreover, in the above speed

range, the effect of acoustic-wave orientation is differ-

ent for the different types of surface nonuniforlnities. Of

course, the predictions developed in this study are lim-

ited to small-amplitude surface nonuniformities, and fnr-

ther study is required to identify the range of validity for

the linearized approximation, particularly in the range of

transonic Mach numbers.

The calculations also illustrate the influence of

acoustic-wave orientation on the receptivity at super-

sonic Mach numbers; however, a more detailed paramet-

ric study is necessary to pinpoint the receptivity charac-

teristics in this speed range, in particular because three-

dimensional instability waves become more important at

these Mach numbers. Such calculations will enable the as-

sessment of the importance of receptivity near the leading

edge and of that produced by the surface nonuniformities.

Finally, the study demonstrates the sensitive param-

eter dependence of acoustic receptivity in compressible

boundary layers. This dependence will make it particu-

larly difficult to predict the receptivity in actual applica-

tions and hence to predict the location of transition on a

more rational basis.
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Appendix

In this Appendix, we present the inhomogeneous set

of equations that governs the unsteady scattered field

Q_o,_c = (U_,_c, V_o,_c, W_,_c,T_,_, P_,_¢). Recall that

the superscript (j) in Q_) and Q_!_¢ has been dropped

for the simplicity of notation. As stated in section 2 of

this paper, the above set of inhomogeneous equations can

be expressed in the following form after a Fourier trans-

form is taken in the streamwise and spanwise directions:

LNs(cr, OV,_,_,R**)Qw,ae = NNS;2(Qw,Qac), (A1)

where the overbars denote the Fourier transforms of the

perturbation quantities. The operator LNS on the left-

hand side is the matrix form of the linear stability equa-

tions in the coordinate system (X,Y,Z) that is introduced

in Section 2. However, in the literature on the three-

dimensional stability of quasi-parallel shear flows, it is

customary to solve the relevant homogeneous equations

in the wavefront (i.e., "Squire" coordinates) instead of

solving them directly in the physical coordinate system.

Hence, we will follow the same procedure here to solve the

corresponding system of inhomogeneous equations. Thus,

the X- and Z-momentum equations from the set (A1)

will be replaced by the momentum equations along, and

perpendicular to, the wavenumber vector (_,[3) in the

15



Fouriertransformspace.At thesametime,thestream-
wiseandspanwisevelocitieswill be replacedasdepen-
dentvariablesby thehorizontaldivergencefieldqw,ac-+ =-

c_(I,o,ac + fllTv'w,,c and the field qSo,,c = _i'_',o,a_ - BO_ ....

which is related to the vertical vorticity associated with

the unsteady scattered field. After this transformation,

the system of equations that corresponds to (AI) may be

rewritten ill the form

LNS(a, _, B,"_, R,.)Q_,_, = NNS;2(Qw, Qo,), (A2)

where the new array of dependent variables Qw,,¢ corre-

sponds to -+ -- 7_wa_, /Sw,ac). The operator(qw,ac,_'w,ac, qw,ac, ,

_'NS represents the linear stability equations in the ro-

tated (i.e., Squire) coordinate system and has the form

LNS = A-_-y-_ + B + C, (A3)

where the coefficient matrices A, B, and C can be ob-

tained from the expressions given in Malik and Orszag

(1987) and, therefore, will not be repeated in this paper.

The forcing vector NNS;2 in (A2) can be expressed

in the form

(A4)

where the vectors _linv;2 and l_lvi,c;2 represent the bi-

linear interaction terms that arise from the inviscid and

viscous terms, respectively, in the Navier-Stokes equa-

tions. The coefficients of the viscous source terms in the

momentum and the energy equations are smaller than

those of the corresponding inviscid terms by a factor

of O(R6.). Hence, the error incurred in the prediction

of the instability-wave amplitude by neglecting the vis-

cous terms from the forcing _INS;2 would appear to be

O(I/R6.), or of the same order as the error in neglect-

ing the effects of base-flow variation (i.e., growth of the

mean boundary layer) across the region of nonuniformity.

However, this conjecture is incorrect because some of the

"O(1/R_.)" terms involve first or second derivatives of

the mean-flow disturbance and/or the acoustic-signature

field with respect to Y, which can become rather large in

certain localized regions across the boundary layer. Thus,

the contribution from these terms (relative to that of the

inviscid nonlinearities) is actually larger than O(1/R6.).

The precise order of the contribution from each term of

this type can only be determined after we have considered

all asymptotic subregions that characterize the mean-flow

disturbance, the acoustic-signature field, and the insta-

bility wave. Nevertheless, the magnitude of the contri-

bution from each viscous term is already related to the

corresponding sum of the orders of derivatives of the first-

order perturbations (_to and Qac with respect to the wall-

normal coordinate.

The set of viscous forcing terms may then he fiirther
classified as

lq,,i,_;2 1Q(2) lq (l) r_(°) (A5)"_ vise;2 "_- vi_c;2 + * "vise;2 '

where the superscripts within parentheses on the right-

hand side of (AS) indicate the sum of the orders of deriva-

tives of 1_ and Q,, with respect to Y. A larger value

of the superscript indicates that the overall contribution

from that subclass of viscous terms is more dominant.

Thus, terms that belong to 1_1_,;2 provide the largest

viscous contribution, as a whole, to the amplitude of the

generated instability wave. These terms can become com-

parable to the inviscid forcing terms in certain localized

regions of the boundary layer, such as the viscous layer

close to the wall. However, as we mentioned previously,

in the absence of a rigorous asymptotic analysis, decision

as to whether the overall contribution from these terms

is comparable to that of the inviscid forcing (or whether

it simply provides the dominant correction for the latter)

is difficult. In either case, terms from l_l0) provide a
vise;2

higher order correction, which is larger than O(1/R_.).

On the other hand, the terms in Kr(°)• -.i_;2 are uniformly
of O(I/Rt.) with respect to the inviscid terms; there-

fore, these terms may be safely neglected on the grounds

stated in the previous paragraph. The only reason for

including them in the numerical calculation would be to

maintain consistency with the adopted framework of the

quasi-parallel stability theory.

The overall contribution from _(1) and Kr(°)
"'vise;2 "'vise;2

was small, even at Mach numbers as large as 4.5. The nu-

merical results presented in this paper include the effects

of both source terms; however, because the expressions

for these terms are rather lengthy, we have omitted them

from this appendix. Thus, only the expressions for the

inviscid forcing terms l_li,_;_ and the dominant viscous

terms 1_1_,;2 are given below. The first three elements

of each of these vectors correspond to the source terms in

the momentum equations that correspond to 4+ .... rVw,_¢

and _,_, respectively; the fourth and fifth elements cor-

respond to the forcing in the energy and continuity equa-

tions, respectively. In deriving the expressions for these
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sourceterms,wehaveassumedthat thespecificheat
C_, the ratio of specific heats 7, and the Prandtl num-

ber cr are all constant quantities. In addition, the Stokes

hypothesis has been assumed to be valid. The primes

in these equations denote derivatives with respect to the

wall-normal coordinate Y. Because of the lengthy na-

ture of the expressions involved, the latter have also been

checked with the symbolic manipulation package Mathe-

malica. Expressions for KTO) and Kr(°) are available
_ " visc;2 " " visc;2

from the author upon request.

l_Iinv,2(1) = R_* _-iwfiw(c_Uoc + flWac)
' _o _-

l [i(_o_O_+ _o_w_)(_u_ + nwoD

+%(_u'_ + _w'_)

+i(o,,_u_ + _,_w_)(.O_ + _w_)

+vo_(_" + _w')]

+_ [i(_o_uo+ _o_Wo)(_u_ + _wo_)

+vo_(.u; + _w;)]

+p_[i(_Uo + _Wo)(_5_ + _¢¢_)

+%(_v_ + _w_)]}

3 R6. {-iwp_ V,_¢Ni,_,,;2(2)- 4 po

1 [i(a,_j],o + flaclTV,_)Vac + (/,,,V_c+_

+_(_wu_ + _woD% + vo_f/']

+i_,o(_Uo + _,._Wo)vo_

+ip_(_ Uo+ _ Wo)%}

1 [i(a_cU',o -t- 13_Vw)(-flUa¢ + c_W_¢)+_

+%(-_uL + -w'D

+i(._u_. + _w_)(-_O,. + .W,o)

+vo_(-_o; + _w')]

+_ [i(_o_Uo+ _o_Wo)(-_uoc + .wo_)

+vo_(-_u_ + _w_)]

+po_[_(._ Uo+ _.0Wo)(-_5,. + .w_)

+%(-_v_ + .w_)]}

Ni,,_ ;2(4) = _rR6______.{_iwp,_ T_c
#0

1 [i(_0_ + _o_W_)Toc+ %T'_+_
+i(._vo_ + _w_)% + vo_f'_]

+_ [i(_oy0 + _a_Wo)Toc+ Vo_T_]

+p_[i(a_Uo + [3_Wo)Tw + V_T_]

-(v - 1)ML [_(_0_ + _o_:_)zoc + %P'_

+i(_ _o_+ _ woo)_.+ romp;]}

# -
N_._;_(5)= -To i(O,ocO,_+ _o_V,,,)po_+ p,_cV,_

+f., [_(.o_Vo_+ _o_W_) + V'c]

+_o_[_(._o_+ _w_) + v_']}

+_((_Vo+ _Wo) - _) (_ _o_+ p_)

-(_) i d, [_(_U"_+;_W"_)
Nvisc;_(1) - #o dTo

-- II+To_(M;" + _w_)
-I t + TL(o_u,_+ _w;)]+T_(aUo_ + flW'_) ' -' -'

! -!

_(2) t2_ 1 d_ [TwV_a_c+ Tac_/_ + _._wV_c+ T_cVw ]
"'visc;_', _ - go dTo

- (_) 1 d# - ,,
N_i,_;_(3) - -#o _ [T_o(-flUa_ + o_W"_)

-- II+T.¢(-ZU" + _W:;)

-' ' ,_w'_) ' -' -'+T_(-flU_ + + T_¢(-flU,_ + o_W,_)]

- l/ -It -1 # I -I

r_ (_) t4_ - 1 dp (T_T_ + T,_T_ + T_,T_ + T_T[o )"'visc;2_ _ .4'_^_o

, , , , 4,,)- u_uo_+w;wL+-_y;yL

- (_)
Nvisc;2(5 ) = 0
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